

VISUAL INSPECTION OF CRIMPED TERMINALS NDUSTRIAL

Open Barrel Terminals

Wire Visible

Crimp Types

F CRIMP FOR OPEN BARREL TERMINALS

CONFINED CRIMP FOR CLOSED BARREL TERMINALS

Tensile strength in kilogram-force Value in newtons in parenthesis

Wire Size	*UL-486A	*UL-486-C	*UL-310	*Military Class 2
26	1.4 (13)	N/A	N/A	3.18 (31.1)
24	2.3 (22)	N/A	N/A	4.54 (44.5)
22	3.6 (36)	3.6 (36)	3.6 (36)	6.80 (66.7)
20	5.9 (58)	4.5 (44)	5.9 (58)	8.62 (84.5)
18	9.1 (89)	4.5 (44)	9.1 (89)	17.2 (169)
16	14 (130)	6.8 (67)	14 (130)	22.7 (222)
14	23 (220)	11 (110)	23 (220)	31.8 (311)
12	32 (310)	16 (160)	32 (310)	49.9 (489)
10	36 (360)	18 (180)	36 (360)	68.0 (667)
8	41 (400)	20 (200)	N/A	102 (1000)
6	45 (440)	23 (220)	N/A	136 (1330)
4	64 (620)	N/A	N/A	181 (1780)
2	82 (800)	N/A	N/A	249 (2450)
1	91 (890)	N/A	N/A	295 (2890)
1/0	110 (1100)	N/A	N/A	318 (3110)
2/0	140 (1300)	N/A	N/A	340 (3340)
3/0	160 (1600)	N/A	N/A	374 (3670)
4/0	200 (2000)	N/A	N/A	397 (3890)
250 MCM	230 (2200)	N/A	N/A	454 (4450)
300 MCM	250 (2400)	N/A	N/A	508 (4980)
350 MCM	270 (2700)	N/A	N/A	510 (5000)

* UL - 486 A - Terminals (Copper conductors only) * **UL - 486 C** - Butt Splices, Parallel Splices, Closed End Connectors

and Wire Nuts

exceeds insulation

diameter

* **UL - 310** - Quick Disconnects, Flag and Couplers * Military Class 2 - Military Approved Terminals only as listed

AWG-CMA Table

Terminal Size	CMA Range		
26-22	202 - 810		
24-20	320 - 1,020		
22-18	509 - 2,600		
22-16	509 - 3,260		
16-14	2,050 - 5,180		
14-12	3,260 - 8,213		
12-10	5,180 - 13,100		
8	13,100 - 20,800		
6	20,800 - 33,100		
4	33,100 - 52,600		
2	52,600 - 83,700		
1/0	83,700 - 119,500		
2/0	119,500 - 150,500		
3/0	150,500 - 190,000		
4/0	190,000 - 231,000		

Technical Wire Information

CMA - CMA is used to denote wire area expressed in Circular Mil. One Circular Mil is equal to cross-sectional area of a wire one Mil in diameter.

MIL - One mil equals .001 inches. .001 = 1 mil.030 = 30 mils

.125 = 125 mils

www.molex.com

Closed Barrel Terminals

Computation of CMA

D = Diameter in mils

Round Solid Conductor: Change diameter from inches to mils, then multiply the diameter in mils by itself.

Stranded Conductor: Find CMA of a single strand and multiply the result by the total number of strands. CMA = (D of one strand x D of one strand) x Number of Strands

VISUAL INSPECTION OF CRIMPED TERMINALS

Examples

Measurement of Crimp Height

Improper Wire Preparation

Conductor

Crimp

Height

Cut-off Tab Length

Conductor Brush

Bellmouth

Examples

Optimal Crimp

* Extrusions should be minimal or non-existent. When a minimal extrusion exists, it should not exceed below the bottom of the terminal.

Crimp Height Testing

- 1. Complete tool set-up procedure.
- 2. Crimp a minimum of 5 samples.
- 3. Place the flat blade of the crimp micrometer across the center of the dual radii of the conductor crimp.
- Do not take measurement near the conductor bellmouth.
- 4. Rotate the micrometer dial until the point contacts the bottom most radial surface. If using a caliper, be certain not to measure the extrusion points of the crimp.
- Record crimp height readings. A minimum of 5 crimp height readings are necessary to confirm each set-up. A minimum of 30 readings are necessary to determine capability.
- 6. Check crimp height every 250 to 500 parts throughout the run.

